Dodatek - vyčíslení bilancí prvků a náboje a maticovou metodou

Matice

Reaktanty Produkty
ClO2 H2O2 OH- O2 ClO2- H2O
a b c p q r
Cl 1 1
O 2 2 1 2 2 1
H 2 1 2
náboj -1 -1

Bilance prvků

Cl: + 1·a = + 1·q
O: + 2·a + 2·b + 1·c = + 2·p + 2·q + 1·r
H: + 2·b + 1·c = + 2·r

Bilance elektronů (náboje)

+0·a +0·b -1·c = +0·p -1·q +0·r

Zadání pro program Mathematica

eqns = {
 + 1*a== + 1*q,
 + 2*a + 2*b + 1*c== + 2*p + 2*q + 1*r,
 + 2*b + 1*c== + 2*r,
 +0*a +0*b -1*c== +0*p -1*q +0*r}
Solve[eqns]

Neznámých koeficientů je: 6, počet nezávislých rovnic je: 4. Počet stupňů volnosti je tedy: 6 - 4 = 2. Jedno z možných řešení je:

Zadání (program Octave/Matlab) reaction_id-8-8.m

% 
% Jiri Jirat
% Prague Institute of Chemical Technology
% 

%
% matice - 1. sloupec naboj, dalsi sloupce prvky
%
a = [
0,1,0,2;
0,0,2,2;
-1,0,1,1;
0,0,0,2;
-1,1,0,2;
0,0,2,1]
hodnost = rank(a)  % hodnost matice = pocet nezavislych rovnic
b = a'             % transpozice matice
c = null(b)        % nalezeni baze nuloveho prostoru matice b
reseni = rref(c')  % upravy na "row reduced echelon form"

Řešení (program Octave/Matlab)

a =

   0   1   0   2
   0   0   2   2
  -1   0   1   1
   0   0   0   2
  -1   1   0   2
   0   0   2   1

hodnost = 4
b =

   0   0  -1   0  -1   0
   1   0   0   0   1   0
   0   2   1   0   0   2
   2   2   1   2   2   1

c =

   0.36080  -0.43406
  -0.61290  -0.30558
   0.36080  -0.43406
   0.21625   0.26130
  -0.36080   0.43406
   0.43250   0.52261

reseni =

   1.00000   0.00000   1.00000  -0.25000  -1.00000  -0.50000
   0.00000   1.00000  -0.00000  -0.50000   0.00000  -1.00000

Zadání (program Mathematica)

m = {
{0,1,0,2},
{0,0,2,2},
{-1,0,1,1},
{0,0,0,2},
{-1,1,0,2},
{0,0,2,1}}
NullSpace[Transpose[m]]